NBXTDIMENSION®

TECHNICAL DATA SHEET

N3D-HT511 High-temperature material

N3D-HT511 is a stiff, high temperature material that is solvent resistant and autoclavable. N3D-HT511 exhibits injection molding like surface quality, having an excellent balance of high temperature resistance and toughness.

KEY FEATURES

- → Tough & rigid
- → High heat deflection temperature
- → Chemical & water resistance

APPLICATIONS

- \rightarrow High temperature component testing
- → Electrical connectors
- → Tooling
- → Molding

MAIN MARKETS

- → Automotive
- → Industrial
- → Transportation
- → Electronics

KEY PROPERTIES

N3D-HT511				
Liquid				
Appearance	Black			
Viscosity @ 25°C	650 cP			
Material				
Tensile Strength	54 MPa			
Tensile Modulus	2400 MPa			
Tensile Elongation at Break	7%			
Flexural Strength	81 MPa			
Flexural Modulus	2040 MPa			
HDT @ 0.455 MPa	130°C			
HDT @ 1.8 MPa	91°C			
T_{α} , by DMA	148°C			

N3D-HT511 High-temperature material

MATERIAL PROPERTIES

Property	Units	Method	Green ⁽¹⁾	UV Post-Curing ⁽²⁾	Final Properties ⁽³⁾
Tensile Strength	MPa	ASTM D638	19 ± 3	49 ± 3	54 ± 1
Tensile Modulus	MPa	ASTM D638	1020 ± 100	2150 ± 140	2400 ± 100
Tensile Elongation at Break	%	ASTM D638		7 ± 1	7 ± 1
Flexural Strength	MPa	ASTM D790	46 ± 1	75 ± 2	81 ± 1
Flexural Modulus	MPa	ASTM D790	1080 ± 20	1890 ± 60	2040 ± 10
	J/m	ASTM D256 ⁽⁴⁾			16 ± 4
Notched Izod Impact Resistance	kJ/m²	ISO 180-A ⁽⁴⁾			1.7 ± 0.1
Unnotched Izod Impact Resistance	J/m	ASTM D4812			285 ± 100
	kJ/m²	ISO 180-U			4.4 ± 2.0
HDT @ 0.455 MPa	°C	ASTM D648		98	130
HDT @ 1.8 MPa	°C	ASTM D648		61	91
Shore Hardness	Shore D	ASTM D2240	79	84	86
T_{α} , by DMA	°C	ASTM D4065	91	123	148
Storage Modulus (E') Onset	°C	ASTM D4065	15	45	79
Loss Modulus (E") Peak	°C	ASTM D4065	-10	80	85
Volumetric Shrinkage	%	Archimedes principle	10.3	10.9	11
Water Absorption	% weight gain, 24 hours	ASTM D570			0.45%
Solid Density	g/cm ³	Density kit ⁽⁵⁾			1.217

1 Parts were printed in the XZ orientation with a 50 µm layer thickness on a 405 nm bottom-up DLP printer with an irradiance of 12 mW/cm². Green samples were conditioned for 40-80 hours following ASTM D618 Procedure A before testing.

2 Parts were printed in the XZ orientation with a 50 μm layer thickness on a 405 nm bottom-up DLP printer with an irradiance of 12 mW/cm². Parts were postcured for 60 seconds per side with 5,700 mJ/cm² of UVV energy dosage & 6,800 of UVA mJ/cm² energy dosage. Samples were conditioned for 40-80 hours following ASTM D618 Procedure A before testing.

3 Parts were printed in the XZ orientation with a 50 µm layer thickness on a 405 nm bottom-up DLP printer with an irradiance of 12 mW/cm². Parts were postcured for 60 seconds per side with 5,700 mJ/cm² of UVV energy dosage & 6,800 mJ/cm² of UVA energy dosage. Following UV post-curing, samples were thermally cured for an additional 2 hours at 120°C. Samples were conditioned for 40-80 hours following ASTM D618 Procedure A before testing.

4 Parts were printed without a notch and a notch was generated with a manual notch cutting plane.

5 Solid density was determined on 10 mm x 10 mm x 10 mm 3D printed cubes via Archimedes principle.

ARKEMA

LIQUID PROPERTIES

Property	Units	Units Method	
Appearance	_	—	Black
Viscosity, 25°C	сР	Brookfield SP #31	650
Liquid Density	g/cm³	Gardco cup	1.096

PRINTING CONDITIONS

Reactivity values were generated on a 385 nm wavelength bottom-up 3D printer with an irradiance of 4.5 mW/cm².

Working-Curves	Units	Value
Critical Exposure (E _c)	mJ/cm ²	12.3
Penetration Depth (D _p)	mils	6.2

3D printing parameters that can be used as starting points on LCD and DLP 3D printers are shown in the table below. Although not explicitly stated, other 3D printing parameters may be realized through process development.

3D Printing Parameter	Units	Printing & Reactivity			
Layer Thickness	μm	50	100	50	
Wavelength	nm	385	385	405	
Intensity	mW/cm ²	6	6	3	
Standard Exposure Time	Sec	5.5	8	18	
Burn in Exposure Time	Sec	22	32	72	

Specific printing parameters are available on printers including Asiga, Phrozen, RapidShape and Stratasys P3[™] Origin®. For additional guidance on print parameter setup for specific 3D printers, consult with Arkema technical service teams.

POST-CURING CONDITIONS

Post-curing conditions that can be used as starting points are shown in the table below. Although not explicitly stated, other post-processing conditions may be realized through process development.

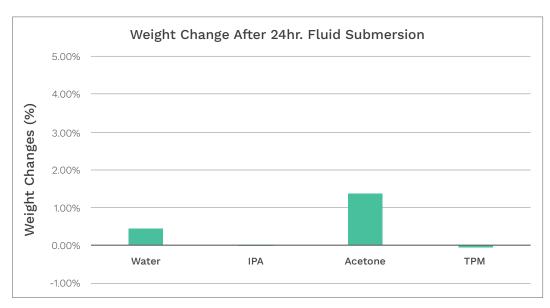
	Dymax 5000	IntelliRay 400	LED Cure Box
Time (sec)	60	300	300
UVA Irradiance (mW/cm²)	100-120	100-120	50
UVV Irradiance (mW/cm ²)	100–120	100-120	75

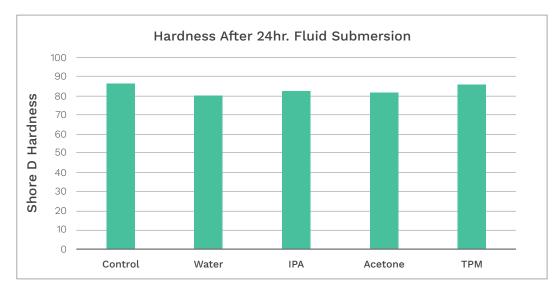
For best results, thermally cure N3D-HT511 for two hours at 120°C following UV cure.

CLEANING PROCESS

Submerge 3D printed parts in traditional 3D printing solvents and agitate and/or sonicate for approximately 10 minutes. Incorporate two-stage cleaning baths for optimal cleaning. Use compressed air to remove any residual liquid material. Repeat steps as necessary until parts are free of residual material, and then proceed to post curing. Although not explicitly stated, other cleaning procedures may be realized that adequately clean 3D printed parts.

STORAGE & HANDLING


Manually shake bottle before use. Store bottles in a cool, dry place. Do not freeze. The material is light sensitive. Keep open bottles away from ambient lighting or sunlight, and shield material from ambient light. Once opened, packaging should be resealed immediately after use. See Safety Data Sheet for additional storage & handling considerations.


N3D-HT511

CHEMICAL RESISTANCE

High-temperature material

2" diameter discs (1/8" thickness) were 3D printed & post-processed, dried for 24 hours at 50°C, and submerged at room temperature conditions for 24 hours complying with ASTM D570 for water resistance and ASTM D543 for chemical resistance. Weight before and after submersion was measured and resulting percent changes were calculated.

2" diameter discs (1/8" thickness) were 3D printed & post-processed, dried for 24 hours at 50°C, and submerged at room temperature conditions for 24 hours complying with ASTM D543 & ASTM D570. Resulting Shore D hardness was measured via ASTM D2240.

Arkema Inc. **Arkema France** 502 Thomas Jones Way 420, rue d'Estienne d'Orves Exton, PA 19341 92705 Colombes Cedex America France

Disclaimer - Please consult Arkema's disclaimer regarding the use of Arkema's products on https://www.arkema.com/global/en/products/product-safety/disclaimer/

Register of Nanterre under the number 319 632 790

ARKEM